The corresponding paper that has been published recently and ahead of print in Psychology of Sport and Exercise examines two scenarios where this might be expected. In Experiment #1 a well-known high-intensity 30s anaerobic cycling power challenge known as the Wingate Anaerobic Power Test (WAnT) was applied (Bar-Or, 1987) while in Experiment #2 an isometric hand-grip strength task was performed.
If you want to get the most of your workouts, try bicarbonate supplementation:
With only 29 adults (aged 18–25 years | mean age 21.0 years, SD 1.84), including 18 females, in the final analysis of the more relevant data from the Wingate Power Test, the study wasn't exactly a large-scale investigation and failed to comply to the precalculated minimum required sample size of N = 32 that would provide 90% power in comparisons across the swearing and non-swearing conditions (in each condition the subjects had to swear/use "placebo" words 10 times). With a de facto analytic power of 87%, the results are yet still "comfortably above the 80% minimum power recommended by Cohen (1988)" (Stephens 2017).
Participants were instructed not to shout, but to use a strong and clear voice, and to pedal from a seated position “in the saddle” during the Wingate test in experiment 1. Furthermore, all participants were blinded to the load added to the cycle to eliminate motivation bias.
"Two designs were applied. First, a repeated measures design was applied in which scores in the swearing and non-swearing conditions were compared using paired samples t-tests. The dependent variables were WAnT peak power, WAnT time to peak power, WAnT average power, WAnT power drop, perceived exertion, heart rate, systolic blood pressure, diastolic blood pressure and time domain and frequency domain measures of heart rate variability. Second, a 2 × 2 mixed design was applied with the within-subjects factor swearing (swearing vs. non-swearing) and the between-subjects factor condition order (swearing first vs. non-swearing first) for the dependent variables WAnT peak power, WAnT average power and WAnT power drop. This was to assess possible carryover effects arising from the repeated measures design" (Stephens 2017).The Wingate trials (WAnT) were repeated twice separated by a 20-min rest period. During the rest period, participants rated their perceived exertion of the previous bout. Heart rate was assessed continuously and peak heart rate during each WAnT was determined 5 s after the highest power output was achieved in accordance with previous work.
The scientists recorded significant performance improvements in both the Wingate and the strength test when they compared the swearing to the 'placebo' condition.
More specifically, a significantly greater peak power and average power were exerted during the WAnT when participants repeated a swear word during the 30 s challenge. However, this was traded off against a larger degree of power drop, a measure of fatigue, in the swearing condition.
Figure 1: Effects of swearing on power output during the Wingate test (Stephens 2017). |
What it appears to do, however, is to increase your physical strength... well, at least for 42 participants (81% of the sample) of the subjects in experiment 2 that was the case.
Figure 2: Means (SDs) for grip force, perceived exertion score, perceived pain score during the grip test (Stephens 2017). |
The mechanism that's behind this effect is yet not what the scientists thought it would be: it's not the effect of swearing on the central nervous system.
In contrast to the authors' first hypothesis, which predicted performance increases in both the Wingate and handgrip strength test, the authors' second hypothesis that there would be increased sympathetic activation due to swearing, was not supported.
Figure 3: None of the classic cardiovascular markers of CNS activity differed between conditions (Stephens 2017). |
I have to admit, though, that the alternative explanations Stephens et al. propose have their appeal, as well: reduced pain perception - distraction of attention away from a painful stimulus is known to reduce pain perception via descending pain inhibitory pathways (Edwards, Campbell, Jamison, & Weich, 2009) - it is possible that reduced pain perception due to swearing-induced distraction underlies the improved performance on the WAnT task by making it more tolerable to pedal hard against the resistance on the WAnT.
The only problem here is that a pain reduction was not observed in the 2nd experiment that assessed the maximal handgrip strength. And, in the absence of changes in heart rate or skin conductance compared with non-swearing, experiment 2 didn't provide the sought for evidence of increased sympathetic activation with swearing, either.
Looking for new ergogenic supps? Look no further, (re-)read my recent article about "Capsaicin - 'Hot' New Ergogenic With Profound Metabolic and Health Benefits!? Recent Study + Older Data Reviewed" | more |
As the scientists argue in the discussion of the results, any "[i]ncreased muscular performance may alternatively have occurred due to a generalized disinhibition brought about by swearing" (Stephens 2017) and/or increases in motor unit drive, which was unfortunately not measured in the study at hand because it was not initially suspected to be involved in the expected ergogenic effects of swearing.
Alternatively, Stephens et al. speculate, that there may be something special to the sound and articulation of swearing that is less common in non-swear words, for example, plosiveness (i.e. a speech sound produced by complete closure of the oral passage and subsequent release accompanied by a burst of air).
Now, swearwords are obviously not the only plosive words. Accordingly, an important limitation of the study at hand is that the scientists, in focussing on one particular kind of emotional language, "cannot rule out the possibility that other kinds of emotionally provocative language might also have similar effects, via similar mechanisms" (Stephens 2017) - corresponding research assessing effects of emotionally valenced non-swear words on physical performance is thus warranted - not just to keep it decent at your local gym, by the way ;-) | Comment!
- Goulopoulou, Styliani, et al. "Heart rate variability during recovery from a Wingate test in adolescent males." Medicine and science in sports and exercise 38.5 (2006): 875-881.
- Inbar, Omri, and O. D. E. D. Bar-Or. "Anaerobic characteristics in male children and adolescents." Med Sci Sports Exerc 18.3 (1986): 264-9.
- Stephens, Richard, David K. Spierer, and Emmanuel Katehis. "Effect of swearing on strength and power performance." Psychology of Sport and Exercise (2017).